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Abstrat

We present C

�

-algebrai quantum deformations of the \az + b" group for new values

of the deformation parameter.

1 Introdution

Quantum \az + b" groups have been onsidered by several authors ([17℄, [10℄, [4℄). These

quantum groups are labeled by a omplex parameter q alled the deformation parameter.

In the known approahes it was either a real number between 0 and 1 or a root of unity

of the form e

2�i

N

with N an even integer greater or equal to 6.

In this paper we present the results of the authors thesis [8℄ in whih a deformation

of the \az+ b" group was onstruted with a omplex deformation parameter of modulus

stritly smaller than 1. The values of the parameter are restrited to a ertain subset of

the unit disk (f. Subsetion 2.1). It turns out that these values are the only ones for whih

the onstrution an be arried out within the sheme adopted in [17℄ and [8℄. Moreover

many properties of the assoiated speial funtions (f. Subsetion 2.2) are equivalent to

the onditions imposed on the values of q.

We have deided to omit the proofs of most statements of the paper. Many of them

are the same for quantum \az + b" groups regardless of the value of the deformation

parameter. The analysis of Weyl ommutation relations is also similar for all values of

the parameter and is based on the results for the Zakrzewski ommutation relations from

[16℄. The spei� problems related to the deformation presented in this paper are mainly

of omputational nature and are all addressed in [8℄.

1.1 Desription of the paper

In the next two subsetions we briey review the known quantum versions of the \az+ b"

group. We begin with the Hopf �-algebra level and then desribe the C

�

-algebrai versions

of S.L. Woronowiz.

Setion 2 is devoted to the presentation of neessary instruments for the onstrution

of our quantum group. In Setion 3 we onstrut the main objet in the onstrution of the

quantum group { the multipliative unitary operator, and examine its properties. Setion

4 presents the onstrution of the quantum group as well as some additional results. In

this setion the onnetion with the algebrai situation of subsetion 1.2 is made. In the

appendix we present �gures showing the set of allowable values of q and the group �

q

(f. Subsetion 2.1).
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1.2 Hopf �-algebra level

Let q be a non zero omplex number and let A be a unital �-algebra generated by three

normal elements a, a

�1

and b subjet to relations:

a

�1

a = aa

�1

= I;

ab = q

2

ba; ab

�

= b

�

a:

We endow A with the struture of a Hopf �-algebra putting

Æ(a) = a
 a; �(a) = 1; �(a) = a

�1

;

Æ(b) = a
 b + b
 I; �(b) = 0; ; �(b) = �a

�1

b:

This Hopf �-algebra has some interesting properties. For example its antipode � an

be written as

� = RÆ�

i=2

; (1)

where R is a �-antiautomorphism of A (alled the unitary antipode) and �

i=2

is a holo-

morphi extension of a one parameter group (�

t

)

t2R

of �-automorphisms of A alled the

saling group (f. [10, Prop. 2.4℄ and [8, Prop. 4.1℄ for details). We refer to the deompo-

sition (1) as the polar deomposition of �.

1.3 Examples of S.L. Woronowiz

In [17℄ S.L. Woronowiz onstruted quantum deformations of the \az + b" group on the

level of C

�

-algebras. The algebrai relations of the Hopf �-algebra approah had to be

supplemented by spetral onditions. For q = e

2�i

N

(with N an even integer greater or

equal to 6) the onditions are that spetra of the generators a and b be ontained in the

losure of the set

N�1

[

k=1

q

k

R

+

� C :

It is remarkable that this ondition an be put in the algebrai framework. It is equivalent

to demand that a

N

2

and b

N

2

be selfadjoint. The quotient of the Hopf �-algebra A by the

ideal generated by a

N

2

�

�

a

N

2

�

�

and b

N

2

�

�

b

N

2

�

�

is again a Hopf �-algebra.

On the other hand for 0 < q < 1 the spetral ondition is that spetra of a and b be

ontained in the losure of

�

z 2 C : jzj 2 q

Z

	

� C :

This ondition annot be rephrased using only algebrai language.

The spetral onditions ensure the existene of C

�

-algebrai versions of the quantum

\az + b" group for spei�ed deformation parameters. They also ensure that the saling

group (�

t

)

t2R

and unitary antipode R are unique. This last feature is typial for the

C

�

-algebrai quantum groups (f. [15℄).

The quantum \az + b" groups desribed in this paper are onstruted along the lines

indiated in [17℄. The orresponding spetral ondition is of non algebrai nature, but

many aspets of the onstrution are similar to the ase of q being a root of unity.
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2 Speial funtions and ommutation relations

2.1 Deformation parameter

The deformation parameter for our deformations of the \az+ b" group will be a non zero

omplex number q suh that if we write

q = exp

�

�

�1

�

(2)

then Re� < 0 and

Im� =

N

2�

;

where N is a non zero even integer. The set of suh q with jN j � 32 is plotted in Figure

1.

The parameter � satisfying (2) will be kept �xed throughout the paper. Having hosen

� we an ompute omplex powers of q:

q

z

= exp

�

z

�

�

for any z 2 C .

With q we assoiate the subgroup �

q

� C n f0g de�ned as the group generated by q

and

�

q

it

: t 2 R

	

.

Proposition 2.1 The set �

q

is a olletion of jN j logarithmi spirals around 0 2 C :

�

q

=

jN j�1

[

k=0

q

k

�

q

it

: t 2 R

	

:

Consequently �

q

is isomorphi to Z

jNj

� R.

It follows that �

q

is a self dual loally ompat abelian group. We shall denote by �

q

the losure of �

q

in C , i.e. �

q

= �

q

[ f0g. Figure 2 presents �

q

for q = exp

�

�

�1

�

with

� = �2 + i

8

2�

.

2.2 Speial funtions

The self duality of �

q

ensures existene of a nondegenerate biharater on �

q

, but we shall

need one with some additional properties:

Proposition 2.2 There exists a unique ontinuous funtion � : �

q

� �

q

! T whih is a

symmetri and nondegenerate biharater, i.e.

�(; 

0

) = �(

0

; );

�(; 

0

)�(; 

00

) = �(; 

0



00

)

for all ; 

0

; 

00

2 �

q

and

�

�(; 

0

) = 1

for all 

0

2 �

q

�

=)

�

 = 1

�

;

satisfying

�(; q) = Phase ;

�(; q

it

) = jj

it

for all  2 �

q

and t 2 R. Moreover there exists a ontinuous funtion � : �

q

! T suh

that for any ; 

0

2 �

q

�(; 

0

) =

�(

0

)

�()�(

0

)

:
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The funtion � is obviously not unique. Although many aspets of our onstrution

do not depend on the partiular hoie of �, we shall use

�(q

n

q

it

) = Phase

(n + it)

2

2�

:

Finally for  2 �

q

n

�

�q

�2k

: k 2 Z

+

	

let

F

q

() =

1

Y

k=0

1 + q

2k



1 + q

2k



:

Then F

q

extends to a ontinuous funtion �

q

! T. In partiular F

q

(0) = 1. Some of the most

important properties of F

q

are summarized in the following theorem (f. [8, Thm. 5.11,

5.16℄, [17, Thm. 1.1, 1.2℄,[13, Prop. 1.1, Eq. (1.3)℄):

Theorem 2.3 1. For any  2 �

q

the funtion R 3 t 7! F

q

(q

it

q) extends to a ontinuous

funtion on the strip fz 2 C : �1 � Im z � 0g whih is holomorphi in the interior

of this strip. The value of the extension at the point �i is (1 + )F

q

().

2. For any  2 �

q

we have

F

q

()F

q

(q

2



�1

) = C

q

�(q

�1

);

where C

q

is a onstant of absolute value 1.

The funtion F

q

will be of utmost importane for the study of ommutation relations

in the next subsetion. Point 1. of Theorem 2.3 was in fat the property whih led to the

formula for F

q

. Point 2. allows a detailed analysis of the asymptoti behaviour of F

q

.

2.3 Commutation relations

The ommutation relations that need to be investigated in order to proeed with the

onstrution of the our quantum \az + b" groups are the following:

SR = q

2

RS;

SR

�

= R

�

S;

(3)

where (R;S) is a pair of normal operators ating on some Hilbert spae. Of ourse, (3)

is not a preise way of expressing relations between operators on a Hilbert spae. It is

obvious, however, that bounded non zero normal operators annot satisfy (3).

It turns out that if one wants to onsider relatively \simple" realizations (i.e. ones

with phases and absolute values of R and S ommuting up to a salar, f. [8, Set. 6.1℄)

the orret de�nition is the following:

De�nition 2.4 Let H be a Hilbert spae and let (R;S) be a pair of losed densely de�ned

operators ating on H. We say that (R;S) is a q

2

-pair if

� R and S are normal,

� kerR = f0g = kerS,

� SpR; SpS � �

q

,

� for all ; 

0

2 �

q

we have the Weyl relation:

�(S; )�(

0

; R) = �(

0

; )�(

0

; R)�(S; ):

Theorem 2.5 Let H be a Hilbert spae and let (R;S) be a q

2

-pair of operators ating on

H. Then SÆR, RÆS, SÆR

�

and R

�

ÆS are losable operators and their respetive losures

satisfy (3).
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Idea of proof. Inserting in the Weyl relation (q; q

it

), (q

it

; q), (q; q) and (q

it

; q

it

0

) in

plae of (; 

0

) and performing holomorphi ontinuation in the �rst two ases we get

(PhaseS) jRj = jqjjRj (PhaseS) ;

jSj (PhaseR) = jqj (PhaseR) jSj;

(PhaseS) (PhaseR) = (Phase q) (PhaseR) (PhaseS) ;

jSj

it

jRj

it

0

= jq

it

j

it

0

jRj

it

0

jSj

it

:

This set of equalities makes it possible to prove that there exists a ommon ore for all

�nite produts of operators from the set fS; S

�

; R;R

�

g. Then it is enough to hek our

relations on vetors from this ommon ore.

It should be mentioned here that q

2

-pairs exist and their struture is well known ([8,

Prop. 6.9℄). In fat any suh pair is unitarily equivalent to a diret sum of so alled

Shr�odinger pairs. The Shr�odinger pair (R

S

; S

S

) ats on L

2

(�

q

) in the following way:

The operator R

S

is just multipliation by the variable

�

R

S

f

�

() = f();

while

�

S

S

f

�

() is the value of the analyti extension of R 3 t 7! f(q

it

q) at the point

t = �i.

Theorem 2.5 is true for more general pairs, but here we restrit our attention to pairs

of operators whih are distinguished (f. [8, Set. 6.2, 6.5℄) by the following property:

Theorem 2.6 Let H be a Hilbert spae and let (R;S) be a q

2

-pair of operators ating on

H. Then

1. the sum S + R is a losable operator and its losure S

_

+R satis�es

S

_

+R = F

q

(RS

�1

)SF

q

(RS

�1

)

�

= F

q

(R

�1

S)

�

RF

q

(R

�1

S); (4)

in partiular S

_

+R is a normal operator and Sp

�

S

_

+R

�

� �

q

.

2. The funtion F

q

has the exponential property:

F

q

(S

_

+R) = F

q

(R)F

q

(S): (5)

Idea of proof. First one has to prove that

S

_

+RS = F

q

(R)

�

SF

q

(R): (6)

This follows from the property of the speial funtion F

q

desribed in point 1. of Theorem

2.3. Assume that (R;S) is the Shr�odinger pair. Then, sine R is the operator of multi-

pliation by the variable, we formally have SF

q

(R) = (1 + R)F

q

(R) (f. Theorem 2.3 and

desription of the Shr�odinger pair).

In the seond step one shows that if (R;S) is a q

2

-pair then so is (RS

�1

; S). Then

applying (6) to this pair we get the seond part of (4). The �rst part requires a few more

triks whih inlude the use of point 2. of Theorem 2.3.

To appreiate the power of this theorem more fully we need a result about the speial

funtion F

q

and the aÆliation relation.

Theorem 2.7 Let H be a Hilbert spae and let T be a normal operator ating on H suh

that SpT � �

q

. Let A � B(H) be a nondegenerate C

�

-subalgebra. Then the following

onditions are equivalent:
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1. for all  2 �

q

the unitary operator F

q

(T ) belongs to M(A) and the mapping

�

q

3  7�! F

q

(T ) 2M(A)

is stritly ontinuous,

2. the operator T is aÆliated with A.

The key ingredient of the proof of this theorem the fat that the element F 2

M

�

C

1

�

�

q

�


 C

1

�

�

q

��

given by

F (; 

0

) = F

q

(

0

)

(; 

0

2 �

q

) onstitutes a quantum family of elements aÆliated with C

1

�

�

q

�

whih gen-

erates this algebra in the sense of [14, Set. 4℄.

The algebrai onsequenes of ommutation relations desribed in De�nition 2.4 an

now be revealed in the following theorem:

Theorem 2.8 Let H be a Hilbert spae, A � B(H) a non degenerate C

�

-subalgebra and

let (R;S) be a q

2

-pair suh that R;S � A. Then

1. the operator S

_

+R is aÆliated with A,

2. the operator RS is aÆliated with A.

Proof. Ad 1. By equation (5) we have for all  2 �

q

F

q

�

(S

_

+R)

�

= F

q

(R)F

q

(S)

and sine omposition of operators is a ontinuous operation (on bounded sets) on M(A)

Theorem 2.7 ensures that (S

_

+R) � A.

Ad 2. Applying F

q

to both sides of (6) we get

F

q

(S

_

+RS) = F

q

(R)

�

F

q

(S)F

q

(R):

On the other hand by (5) we have

F

q

(S

_

+RS) = F

q

(RS)F

q

(S):

Combining these formulae we obtain

F

q

(RS) = F

q

(R)

�

F

q

(S)F

q

(R)F

q

(S)

�

: (7)

Now reasoning presented in the proof of 1. gives RS � A. Q.E.D.

Formula (7) appeared �rst in [7, Cor. 2.9℄

3 The multipliative unitary

Equipped with the tools of Setion 2 we an proeed with the onstrution of the quantum

group. We shall use the theory of manageable and, more generally, modular multipliative

unitaries ([15℄, [9℄, [1℄). Before we de�ne the operator from whih our quantum group is

built we will desribe the \quantum spae" of the group. This \quantum spae" is the

operator domain (f. [17, Set. 2℄, [2℄, [11℄) denoted by G and de�ned as follows: for a

Hilbert spae H we shall write G

H

for the set of pairs of normal operators (a; b) ating

on H suh that kera = f0g, a preserves ker b and (bj

ker b

? ; aj

ker b

?) is a q

2

-pair ating on

ker b

?

. The orrespondene H 7! G

H

is an operator domain whih plays the role of the

underlying spae of our quantum group.

Now let us hoose a Hilbert spae H and a pair (a; b) 2 G

H

suh that ker b = f0g.

Then let

W = F

q

(b

�1

a
 b)�(b

�1


 I; I 
 a): (8)

This will be our multipliative unitary.
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Proposition 3.1 Let H be a Hilbert spae and let (a; b) 2 G

H

suh that ker b = f0g.

De�ne W by (8). Then

W (a
 I)W

�

= a
 a;

W (b
 I)W

�

= a
 b

_

+ I 
 a:

(9)

Proof. It is not diÆult to show (f. [8, Lem. 7.3℄) that

�(b

�1


 I; I 
 a)(a
 I)�(b

�1


 I; I 
 a)

�

= a
 a:

Then using the fat that (b; a) is a q

2

-pair one an show that a 
 a strongly ommutes

with b

�1

a
 b. It means that

W (a
 I)W

�

= F

q

(b

�1

a
 b)�(b

�1

a
 I; I 
 a)(a
 I)

��(b

�1


 I; I 
 a)

�

F

q

(b

�1

a
 b)

�

= F

q

(b

�1


 b)(a
 a)F

q

(b

�1

a
 b)

�

= a
 a:

For the proof of the seond part of formula of (9) notie that the pair (R;S) = (b
I; a
b)

is a q

2

-pair of operators ating on H 
H . Sine b
 I ommutes with �(b

�1


 I; I 
 a),

using the seond formula (4) we obtain

W (b
 I)W

�

= F

q

(b

�1

a
 b)�(b

�1


 I; I 
 a)(b
 I)

��(b

�1


 I; I 
 a)

�

F

q

(b

�1

a
 b)

�

= F

q

(b

�1

a
 b)(b
 I)F

q

(b

�1

a
 b)

�

= F

q

(R

�1

S)RF

q

(R

�1

S)

�

= S

_

+R

= a
 b

_

+ b
 I:

Q.E.D.

The operator W is a multipliative unitary, i.e.

W

23

W

12

= W

12

W

13

W

23

and the proof of this pentagon equation relies on the exponential formula (5).

In fat we have the following:

Proposition 3.2 Let (a; b) 2 G

H

be suh that ker b = f0g and let (ba;

b

b) 2 G

K

, where K

is some other Hilbert spae. De�ne W by (8) and let

V = F

q

(

b

b
 b)�(ba
 I; I 
 a):

Then V is an operator adapted to W , i.e.

W

23

V

12

= V

12

V

13

W

23

on K 
H 
H.

The next result, whih enables us to proeed with the onstrution of the quantum

\az + b" group for new values of the deformation parameter, states that W is a modular

multipliative unitary ([9℄):

Theorem 3.3 Let H be a Hilbert spae and let (a; b) 2 G

H

be suh that ker b = f0g.

De�ne W by (8). Then there exist positive selfadjoint operators Q and

b

Q on H suh that

kerQ = f0g = ker

b

Q and a unitary operator

f

W on H 
H suh that

W

�

b

Q
Q

�

W

�

=

�

b

Q
Q

�

7



and for any x; z 2 H, u 2 D(Q), y 2 D

�

Q

�1

�

(x
 u W z 
 y) =

�

z 
Qu

f

W x
Q

�1

y

�

:

The operators Q,

b

Q and

f

W are given by

Q = jaj;

b

Q = jbj;

f

W = F

q

�

�(b

�1

a)

>


 b

�

�

�

�

(b

�1

)

>


 I; I 
 a

�

:

Again the key to this result lies in the speial funtions introdued in Subsetion 2.2.

More preisely in the fat that the distributional Fourier transform of F

q

on the loally

ompat abelian (and self dual) group �

q

is

b

F

q

() = �

F

q

(�q

2

)

2��

�(�q

�2

; )

(1� )F

q

(�q

2

)

:

4 The quantum group

4.1 The onstrution

The theory of manageable and modular multipliative unitaries lets us now arry out the

onstrution of our quantum group. Throughout this setion we shall �x a Hilbert spae

H and a pair (a; b) 2 G

H

suh that ker b = f0g.

The algebra playing the role of the algebra of ontinuous funtions vanishing at in�nity

on our quantum group is by de�nition

A =

�

(! 
 id)W : ! 2 B(H)

�

	

norm losure

: (10)

It an be shown ([8, Prop. 7.25℄, f. [17, Set. 6℄) that A is in fat isomorphi to a rossed

produt

A = C

1

�

�

q

�

o

�

�

q

where the ation � of �

q

on C

1

�

�

q

�

omes from the obvious ation of �

q

on �

q

by multi-

pliation.

Let us desribe in more detail the relationship of operators a and b with the C

�

-

algebra A. The inlusion C

1

�

�

q

�

,! M

�

C

1

�

�

q

�

o

�

�

q

�

is a morphism from C

1

�

�

q

�

to

C

1

�

�

q

�

o

�

�

q

= A. The operator b an be identi�ed with the image under this morphism

of the element z aÆliated with C

1

�

�

q

�

given by

z() = 

for all  2 �

q

. It is therefore lear that b � A.

The operator a is the unique normal operator aÆliated with A suh that the unitary

elements

�(a; ) 2M(A)

( 2 �

q

) onstitute the unitary representation of �

q

implementing the ation � on the

image of C

1

�

�

q

�

in M(A). The existene of suh an operator is a onsequene of the

famous SNAG theorem supplemented by a result similar to Theorem 2.7 ([8, Thm. 7.15℄).

Moreover it an be shown that a

�1

is aÆliated with A and the three elements

a; a

�1

; b

generate the C

�

-algebra A in the sense of [14, Set. 3℄.
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The theory of manageable multipliative unitaries ensures the existene of a oasso-

iative morphism Æ 2 Mor(A;A
A) given by

Æ() = W (
 I)W

�

for any  2 A. It is now an easy onsequene of Proposition 3.1 that the ation of Æ on

aÆliated elements a and b is

Æ(a) = a
 a;

Æ(b) = a
 b

_

+ b
 I:

Aording to the general theory the saling group (�

t

)

t2R

of our quantum group is

given by �

t

() = Q

2it

Q

�2it

for all  2 A. Sine Q = jaj we see that �

t

is the unique

automorphism of A suh that

�

t

(a) = a;

�

t

(b) = q

2it

b:

(11)

It also follows from general theorems about manageable and modular multipliative uni-

taries that the unitary antipode R of our quantum \az + b" group is given on generators

by

a

R

= a

�1

;

b

R

= �qa

�1

b:

(12)

Combining (11) and (12) we an ompute the antipode � = RÆ�

i=2

:

�(a) = a

�1

;

�(b) = �a

�1

b:

All these formulae agree with those found in the Hopf �-algebra framework (f. Subsetion

1.2). We shall denote our quantum group by G = (A; Æ).

4.2 The dual group

The algebra interpreted as the algebra of ontinuous funtions vanishing at in�nity on the

redued dual of G is by de�nition

b

A =

�

(id
 !)(W

�

) : ! 2 B(H)

�

	

norm losure

:

The omultipliation

b

Æ on

b

A is given by

b

Æ(d) = �

�

W

�

(I 
 d)W

�

;

(where � is the ip automorphism of B(H 
H)) for all d 2

b

A.

It will be onvenient at this point to introdue the notation ba = b

�1

,

b

b = b

�1

a. The

following theorem gives a omplete desription of the redued dual

b

G = (

b

A;

b

Æ) of G.

Theorem 4.1 The operators ba and

b

b are aÆliated with

b

A and there exists an isomorphism

	 2 Mor

�

A;

b

A

�

suh that 	(a) = ba, 	(b) =

b

b and

b

Æ

�

	()

�

= �(	
	)Æ():

for all  2 A.

9



The proof of this theorem is the same for quantum \az + b" groups for all values of

the deformation parameter ([17, Set. 7℄, [8, Set. 7.5℄).

The results of [5℄ an be easily transfered to the ase where the deformation parameter

assumes values desribed in Subsetion 2.1. They say that for any Hilbert spae K and

any unitary element V 2M(K(K)
A) suh that

(id
 Æ)V = V

12

V

13

there exists a unique pair (ea;

e

b) 2 G

K

suh that

V = F

q

(

e

b
 b)�(ea
 I; I 
 a):

This statement is onverse to Proposition 3.2 and gives full desription of strongly ontin-

uous unitary representations of G. In view of Theorem 4.1 this means that the quantum

\az + b" group onstruted in Subsetion 4.1 is amenable.

4.3 The Haar measure and related topis

It was reently shown in [18℄ that the framework of modular multipliative unitaries is

very onvenient for investigation of Haar weights. More preisely if W is a modular

multipliative unitary and Q;

b

Q and

f

W are operators related to W as in Theorem 3.3 and

A is the C

�

-algebra de�ned by (10) then

h() = Tr

�

b

Q

b

Q

�

de�nes a right invariant weight on A. If this weight is densely de�ned it is the right Haar

measure of our quantum group.

It turns out that in the ase of W de�ned by (8) the weight h is densely de�ned. As

shown in [18, Example 3, Set. 3℄ for an element

 = f(a)g(b) 2 A

(where f 2 C

1

(�

q

), g 2 C

1

�

�

q

�

) we have

h(

�

) =

Z

�

q

jf()j

2

d�()

Z

�

q

jg()j

2

jj

2

d�();

where d� is a Haar measure on �

q

. The saling onstant of this \az + b" group (i.e. the

onstant � suh that hÆ�

t

= �

�t

h) an now be easily omputed: � = exp

�

4 Im�

�1

�

.

It should be remarked that the methods developed in [10℄ also work perfetly well for

our deformation of the \az + b" group.

The quantum \az + b" group has a subgroup whih is a lassial group isomorphi

to �

q

. Using the theory of rossed produts by abelian loally ompat groups ([3℄) one

an obtain a satisfatory de�nition of the homogeneous spae G=�

q

. It turns out to be a

lassial spae and it arries a natural ation of G. These results will be olleted in a

separate paper [6℄.

Appendix

In the appendix we olleted �gures showing the allowed values of the deformation pa-

rameter q inside the unit irle in the omplex plane and an example of the group �

q

for

q = exp

�

�

�1

�

with � = �2 + i

8

2�

.
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0:5 1:0�0:5�1:0

Figure 1: Values of the deformation parameter q (N = �2; : : : ;�32)

1 2 3 4 5�1�2�3�4�5

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

q

Figure 2: The group �

q

for � = �2 + i

8

2�
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