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Abstract

We present C*-algebraic quantum deformations of the “az + b” group for new values
of the deformation parameter.

1 Introduction

Quantum “az 4+ b” groups have been considered by several authors ([17], [10], [4]). These
quantum groups are labeled by a complex parameter ¢ called the deformation parameter.
In the known approaches it was either a real number between 0 and 1 or a root of unity
of the form e*¥ with N an even integer greater or equal to 6.

In this paper we present the results of the authors thesis [8] in which a deformation
of the “az+b” group was constructed with a complex deformation parameter of modulus
strictly smaller than 1. The values of the parameter are restricted to a certain subset of
the unit disk (cf. Subsection 2.1). It turns out that these values are the only ones for which
the construction can be carried out within the scheme adopted in [17] and [8]. Moreover
many properties of the associated special functions (cf. Subsection 2.2) are equivalent to
the conditions imposed on the values of q.

We have decided to omit the proofs of most statements of the paper. Many of them
are the same for quantum “az + b” groups regardless of the value of the deformation
parameter. The analysis of Weyl commutation relations is also similar for all values of
the parameter and is based on the results for the Zakrzewski commutation relations from
[16]. The specific problems related to the deformation presented in this paper are mainly
of computational nature and are all addressed in [8].

1.1 Description of the paper

In the next two subsections we briefly review the known quantum versions of the “az + b”
group. We begin with the Hopf x-algebra level and then describe the C*-algebraic versions
of S.L.. Woronowicz.

Section 2 is devoted to the presentation of necessary instruments for the construction
of our quantum group. In Section 3 we construct the main object in the construction of the
quantum group — the multiplicative unitary operator, and examine its properties. Section
4 presents the construction of the quantum group as well as some additional results. In
this section the connection with the algebraic situation of subsection 1.2 is made. In the
appendix we present figures showing the set of allowable values of ¢ and the group T
(cf. Subsection 2.1).



1.2 Hopf x-algebra level

Let ¢ be a non zero complex number and let &/ be a unital x-algebra generated by three
normal elements a, a~! and b subject to relations:

ala=aa"' =1,

ab = ¢*ba, ab* = b*a.
We endow .« with the structure of a Hopf -algebra putting

d(a) = a®a, ela) =1, k(a)=a"",
§b)y=a@b+bx I, €b) =0, ,xd)=-a""b

This Hopf *-algebra has some interesting properties. For example its antipode & can
be written as
k= Ror; /25 (1)
where R is a s-antiautomorphism of & (called the unitary antipode) and 7;/5 is a holo-
morphic extension of a one parameter group (7¢):er of *-automorphisms of & called the
scaling group (cf. [10, Prop. 2.4] and [8, Prop. 4.1] for details). We refer to the decompo-
sition (1) as the polar decomposition of k.

1.3 Examples of S.L.. Woronowicz

In [17] S.L. Woronowicz constructed quantum deformations of the “az + b” group on the
level of C*-algebras. The algebraic relations of the Hopf x-algebra approach had to be
supplemented by spectral conditions. For q = e N (with N an even integer greater or
equal to 6) the conditions are that spectra of the generators a and b be contained in the

closure of the set
N—1

U ¢’ cc

k=1
It is remarkable that this condition can be put in the algebraic framework. It is equivalent
to demand that a® and b= be selfadjoint. The quotient of the Hopf x-algebra .&# by the
ideal generated by > — (a*)" and b> — (b>)" is again a Hopf -algebra.

On the other hand for 0 < ¢ < 1 the spectral condition is that spectra of a and b be
contained in the closure of

{zeC:|z]ed”} cC
This condition cannot be rephrased using only algebraic language.

The spectral conditions ensure the existence of C*-algebraic versions of the quantum
“az 4+ b” group for specified deformation parameters. They also ensure that the scaling
group (7¢)ter and unitary antipode R are unique. This last feature is typical for the
C*-algebraic quantum groups (cf. [15]).

The quantum “az 4+ b” groups described in this paper are constructed along the lines
indicated in [17]. The corresponding spectral condition is of non algebraic nature, but
many aspects of the construction are similar to the case of ¢ being a root of unity.
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2 Special functions and commutation relations

2.1 Deformation parameter

The deformation parameter for our deformations of the “az + b” group will be a non zero
complex number ¢ such that if we write

g=exp(p7") (2)
then Rep < 0 and
1 N
mp=—
p o’

where N is a non zero even integer. The set of such ¢ with |[N| < 32 is plotted in Figure
1.

The parameter p satisfying (2) will be kept fixed throughout the paper. Having chosen
p we can compute complex powers of ¢:

r=o)

for any z € C.
With ¢ we associate the subgroup I, C C\ {0} defined as the group generated by ¢
and {q“ 't € ]R}.

Proposition 2.1 The set T, is a collection of |N| logarithmic spirals around 0 € C:

|NV|-1

r,= U qk{qit:teR}.
k=0

Consequently T, is isomorphic to Z|n| X R.

It follows that I, is a self dual locally compact abelian group. We shall denote by T,
the closure of T, in C, i.e. I, = I, U {0}. Figure 2 presents I, for ¢ = exp (p~') with
p=-2+ i%.

2.2 Special functions

The self duality of I, ensures existence of a nondegenerate bicharacter on I,, but we shall
need one with some additional properties:

Proposition 2.2 There exists a unique continuous function x: I, x I, = T which is a
symmetric and nondegenerate bicharacter, i.e.

X7, ") = x5 ),
X0 )XY = x (v ")

for all v,v',y" € T, and
x(,7) =1 _
<f07"all’y’el"q :>(7_1)’

x(7,q) = Phase,
x(v,q") = |v]*

satisfying

for all v € T, and t € R. Moreover there exists a continuous function a: I, — T such
that for any v, € T,
a(rY)

X(%V') = W



The function « is obviously not unique. Although many aspects of our construction
do not depend on the particular choice of «, we shall use

. it)2
a(q"q") = Phase M
Finally for y € T, \ {—¢7?* : k € Z,} let
1+ a*ty
F(y) =TT —L 7
2 () kl;[o Ty

Then F,extends to a continuous function T, — T. In particular F(0) = 1. Some of the most
important properties of F, are summarized in the following theorem (cf. [8, Thm. 5.11,
5.16], [17, Thm. 1.1, 1.2],[13, Prop. 1.1, Eq. (1.3)]):

Theorem 2.3 1. For any v € T, the function R > t — F,(¢%qY) extends to a continuous
function on the strip {z € C: —1 < Imz < 0} which is holomorphic in the interior
of this strip. The value of the extension at the point —i is (1 + v)E,(7).

2. For any v € I, we have
FEME(@y™") = Gala™'),
where C, is a constant of absolute value 1.
The function E, will be of utmost importance for the study of commutation relations

in the next subsection. Point 1. of Theorem 2.3 was in fact the property which led to the
formula for E,. Point 2. allows a detailed analysis of the asymptotic behaviour of E,.

2.3 Commutation relations

The commutation relations that need to be investigated in order to proceed with the
construction of the our quantum “az + b” groups are the following;:

SR = ¢*RS,
SR* = R*S, (3)

where (R, S) is a pair of normal operators acting on some Hilbert space. Of course, (3)
is not a precise way of expressing relations between operators on a Hilbert space. It is
obvious, however, that bounded non zero normal operators cannot satisfy (3).

It turns out that if one wants to consider relatively “simple” realizations (i.e. ones
with phases and absolute values of R and S commuting up to a scalar, cf. [8, Sect. 6.1])
the correct definition is the following:

Definition 2.4 Let H be a Hilbert space and let (R,S) be a pair of closed densely defined
operators acting on H. We say that (R, S) is a ¢*>-pair if
e R and S are normal,
ker R = {0} = ker S,
SpR,SpSCT,,
for all v,v" € T, we have the Weyl relation:

X(S,Mx(', R) = x(v, v)x(v's R)x(S,7)-

Theorem 2.5 Let H be a Hilbert space and let (R, S) be a q?-pair of operators acting on
H. Then SoR, RoS, SoR* and R*oS are closable operators and their respective closures
satisfy (3).



IDEA OF PROOF. Inserting in the Weyl relation (g¢,q¢™), (¢%,q), (¢,¢) and (¢*,¢"') in
place of (v,7') and performing holomorphic continuation in the first two cases we get

(Phase S) |R| = |q||R| (Phase S),

|S| (Phase R) = |q| (Phase R) |S]|,
(Phase S) (Phase R) = (Phase ¢) (Phase R) (Phase S) ,

|S|it|R|it’ — |qit|it’|R|it’ |S|it_

This set of equalities makes it possible to prove that there exists a common core for all
finite products of operators from the set {S,S*, R, R*}. Then it is enough to check our
relations on vectors from this common core.

It should be mentioned here that ¢>-pairs exist and their structure is well known ([8,
Prop. 6.9]). In fact any such pair is unitarily equivalent to a direct sum of so called
Schrédinger pairs. The Schrédinger pair (Rg, Ss) acts on L2(T,) in the following way:
The operator Rg is just multiplication by the variable

(Rsf)(v) =vf (),

while (sz) (7) is the value of the analytic extension of R 3 t + f(q*q7y) at the point
t= —i.

Theorem 2.5 is true for more general pairs, but here we restrict our attention to pairs
of operators which are distinguished (cf. [8, Sect. 6.2, 6.5]) by the following property:

Theorem 2.6 Let H be a Hilbert space and let (R, S) be a q-pair of operators acting on
H. Then
1. the sum S + R is a closable operator and its closure S + R satisfies

S+R=F,RSSE(RS™)" =F(R'S)*RE(R™'S), (4)

in particular S+ R is a normal operator and Sp(S + R) cT,.
2. The function F, has the exponential property:

F (S +R) = F(R)E(S). (5)
IDEA OF PROOF. First one has to prove that
S+ RS =F/(R)*SF,(R). (6)

This follows from the property of the special function F, described in point 1. of Theorem
2.3. Assume that (R, S) is the Schrodinger pair. Then, since R is the operator of multi-
plication by the variable, we formally have SE,(R) = (1 + R)E,(R) (cf. Theorem 2.3 and
description of the Schrédinger pair).

In the second step one shows that if (R, S) is a ¢*>-pair then so is (RS™!,S). Then
applying (6) to this pair we get the second part of (4). The first part requires a few more
tricks which include the use of point 2. of Theorem 2.3.

To appreciate the power of this theorem more fully we need a result about the special
function F, and the affiliation relation.

Theorem 2.7 Let H be a Hilbert space and let T' be a normal operator acting on H such
that SpT C I,. Let A C B(H) be a nondegenerate C*-subalgebra. Then the following
conditions are equivalent:



1. for all v € T, the unitary operator F,(yT) belongs to M(A) and the mapping
T,27+— E(T) € M(A)

is strictly continuous,
2. the operator T is affiliated with A.

The key ingredient of the proof of this theorem the fact that the element F' €
M (Cx(T,) ® Cxo(T,)) given by

F(v,7") =E,(vy)

(v, €T,) constitutes a quantum family of elements affiliated with Cx (T,) which gen-
erates this algebra in the sense of [14, Sect. 4].

The algebraic consequences of commutation relations described in Definition 2.4 can
now be revealed in the following theorem:

Theorem 2.8 Let H be a Hilbert space, A C B(H) a non degenerate C*-subalgebra and
let (R,S) be a q*-pair such that R,Sn A. Then

1. the operator S+ R is affiliated with A,
2. the operator RS is affiliated with A.

PROOF. Ad 1. By equation (5) we have for all v € T,
E(1(S+R)) = E(YR)E(7S)

and since composition of operators is a continuous operation (on bounded sets) on M (A)
Theorem 2.7 ensures that (S + R)n A.
Ad 2. Applying F, to both sides of (6) we get

F,(S + RS) = F,(R)"F,(S)E,(R).
On the other hand by (5) we have
F,(S + RS) = E,(RS)E(S).
Combining these formulae we obtain
F(RS) = F,(R)"F,(S)E,(R)E,(S)". (7)
Now reasoning presented in the proof of 1. gives RS n A. Q.E.D.
Formula (7) appeared first in [7, Cor. 2.9]

3 The multiplicative unitary

Equipped with the tools of Section 2 we can proceed with the construction of the quantum
group. We shall use the theory of manageable and, more generally, modular multiplicative
unitaries ([15], [9], [1]). Before we define the operator from which our quantum group is
built we will describe the “quantum space” of the group. This “quantum space” is the
operator domain (cf. [17, Sect. 2], [2], [11]) denoted by G and defined as follows: for a
Hilbert space H we shall write Gy for the set of pairs of normal operators (a,b) acting
on H such that kera = {0}, a preserves kerb and (b|xer L, @|erpL ) is a g>-pair acting on
kerb-. The correspondence H — G is an operator domain which plays the role of the
underlying space of our quantum group.
Now let us choose a Hilbert space H and a pair (a,b) € Gy such that kerb = {0}.
Then let
W=FOb laob)x(b' @I,I2a). (8)

This will be our multiplicative unitary.



Proposition 3.1 Let H be a Hilbert space and let (a,b) € Gy such that kerb = {0}.
Define W by (8). Then

W hW* =a® a,

Whe )W =aobiloa. 9)

PROOF. It is not difficult to show (cf. [8, Lem. 7.3]) that
xb ' eLIoaleo (b ol Ioa) =aa.

Then using the fact that (b, a) is a ¢?-pair one can show that a ® a strongly commutes
with b~'a ® b. It means that
W )W*=FEOb laxbx(b taw,I®a)(a®I)
xx(0~' @ I,LI @ a)*F,(b~'a® b)*
=F,(b"' ®@b)(a®a)F,(b~"'a®b)*

=a® a.

For the proof of the second part of formula of (9) notice that the pair (R, S) = (b®1I,a®b)
is a g?-pair of operators acting on H ® H. Since b ® I commutes with x(b"! ® I, I ® a),
using the second formula (4) we obtain
Wheo )W*=FEOb laxbx(b o, I®a) (b I)
xx(0~' @ I,LI @ a)*F,(b~'a® b)*

—E (b tab)(b® DE(H lasb)*

=F(R 'S)RF(R 1S)*=S+R

=a®b+b® 1.

Q.E.D.

The operator W is a multiplicative unitary, i.e.
WasWia = WiaWisWas

and the proof of this pentagon equation relies on the exponential formula (5).
In fact we have the following;:

-~

Proposition 3.2 Let (a,b) € G be such that kerb = {0} and let (a,b) € Gk, where K
is some other Hilbert space. Define W by (8) and let

~

V=Ebobx@xIl,I®a).
Then V is an operator adapted to W, i.e.
WasVig = Vi VisWas
on K®H®H.

The next result, which enables us to proceed with the construction of the quantum
“az +b” group for new values of the deformation parameter, states that ¥ is a modular
multiplicative unitary ([9]):

Theorem 3.3 Let H be a Hilbert space and let (a,b) € Gu be such that kerb = {0}.
Define W by (8). Then there exist positive selfadjoint operators @ and Q on H such that
ker Q@ = {0} = ker Q and a unitary operator W on H ® H such that

v (@0Q)w = (@00)

7



and for any x,z € H, w € D(Q), y € D(Q_l)
weulW|zoy) = (70 Qu[F [z Q™).

The operators @, @ and W are given by

Q:|a|7 :|b|7
W=F(-(b'a)T@b) " x (6T @,I®a).

~

Again the key to this result lies in the special functions introduced in Subsection 2.2.
More precisely in the fact that the distributional Fourier transform of E, on the locally
compact abelian (and self dual) group T, is

= E(=¢*) x(=a*)
"= TR

4 The quantum group

4.1 The construction

The theory of manageable and modular multiplicative unitaries lets us now carry out the
construction of our quantum group. Throughout this section we shall fix a Hilbert space
H and a pair (a,b) € Gg such that kerb = {0}.

The algebra playing the role of the algebra of continuous functions vanishing at infinity
on our quantum group is by definition

A= {(weid)W :we B(H),}"™ o o

It can be shown ([8, Prop. 7.25], cf. [17, Sect. 6]) that A is in fact isomorphic to a crossed

product
A=Cn(T) %57,

where the action 3 of T, on Cw(T,) comes from the obvious action of I, on T, by multi-
plication.

Let us describe in more detail the relationship of operators a and b with the C*-
algebra A. The inclusion Cy (fq) — M(Coo (E) X3 Fq) is a morphism from C (E) to

Cw (fq) x5, = A. The operator b can be identified with the image under this morphism
of the element z affiliated with C (T,) given by

z(y) =~

for all v € T,. Tt is therefore clear that bn A.
The operator a is the unique normal operator affiliated with A such that the unitary

elements
x(a,v) € M(A)

(v € T,) constitute the unitary representation of I', implementing the action S on the
image of Cw (T,) in M(A). The existence of such an operator is a consequence of the
famous SNAG theorem supplemented by a result similar to Theorem 2.7 ([8, Thm. 7.15]).
Moreover it can be shown that a~! is affiliated with A and the three elements

a, a” ', b

generate the C*-algebra A in the sense of [14, Sect. 3].



The theory of manageable multiplicative unitaries ensures the existence of a coasso-
ciative morphism 6 € Mor(A4, A ® A) given by

5(c) = W(cw HW*

for any ¢ € A. It is now an easy consequence of Proposition 3.1 that the action of § on
affiliated elements a and b is
d(a) =a® a,

Sh)y=axb+bx 1.

According to the general theory the scaling group (73)ier of our quantum group is
given by 7:(c) = Q**cQ %" for all ¢ € A. Since ) = |a| we see that 7; is the unique
automorphism of A such that

T(a) = a,

Tt(b) — q2itb. (11)

It also follows from general theorems about manageable and modular multiplicative uni-
taries that the unitary antipode R of our quantum “az + b” group is given on generators

by

af =a1,

bR — (12)

—qa~1h.

Combining (11) and (12) we can compute the antipode k = RoT;:

k(b) = —a~'b.

All these formulae agree with those found in the Hopf x-algebra framework (cf. Subsection
1.2). We shall denote our quantum group by G = (A4, 6).

4.2 The dual group

The algebra interpreted as the algebra of continuous functions vanishing at infinity on the
reduced dual of G is by definition
A={({dew)(W*) :we B(H),}"“™ """
The comultiplication son Ais given by
5(d) = o (W*(I 2 d)W),

(where o is the flip automorphism of B(H ® H)) for all d € A
It will be convenient at this point to introduce the notation @ = b~ b~'a. The

)
following theorem gives a complete description of the reduced dual G = (A, 4) of G.

-~

Theorem 4.1 The operators a and b are affiliated with A and there ezists an isomorphism
¥ € Mor (A,zzl\) such that ¥(a) =a, ¥(b) =b and

)

(T(c)) = o(T @ T)d(c).

for all c € A.



The proof of this theorem is the same for quantum “az + b” groups for all values of
the deformation parameter ([17, Sect. 7], [8, Sect. 7.5]).

The results of [5] can be easily transfered to the case where the deformation parameter
assumes values described in Subsection 2.1. They say that for any Hilbert space K and
any unitary element V € M (K(K) ® A) such that

(ld & (S)V == Vlg‘/ig

there exists a unique pair (a,b) € Gk such that

V=Ebobx@xI,I®a).

This statement is converse to Proposition 3.2 and gives full description of strongly contin-
uous unitary representations of G. In view of Theorem 4.1 this means that the quantum
“az 4+ b” group constructed in Subsection 4.1 is amenable.

4.3 The Haar measure and related topics

It was recently shown in [18] that the framework of modular multiplicative unitaries is
very convenient for investigation of Haar weights. More precisely if W is a modular
multiplicative unitary and @, @ and W are operators related to W as in Theorem 3.3 and
A is the C*-algebra defined by (10) then

h(c) =Tr (@c@)

defines a right invariant weight on A. If this weight is densely defined it is the right Haar
measure of our quantum group.

It turns out that in the case of W defined by (8) the weight h is densely defined. As
shown in [18, Example 3, Sect. 3] for an element

c= fla)g(b) € A

(where f € C(L,), g € Cx (T,)) we have

hc*e) = / FO) () / 9P du(),
Fq

Iy

where dy is a Haar measure on T,. The scaling constant of this “az + b” group (i.e. the
constant v such that hor; = v~ 'h) can now be easily computed: v = exp (4 Im pfl).

It should be remarked that the methods developed in [10] also work perfectly well for
our deformation of the “az + b” group.

The quantum “az + b” group has a subgroup which is a classical group isomorphic
to I[,. Using the theory of crossed products by abelian locally compact groups ([3]) one
can obtain a satisfactory definition of the homogeneous space G/T,. It turns out to be a
classical space and it carries a natural action of G. These results will be collected in a
separate paper [6].

Appendix
In the appendix we collected figures showing the allowed values of the deformation pa-

rameter ¢ inside the unit circle in the complex plane and an example of the group I, for
g=-exp(p~') with p = -2 +it.

10
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