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Abstra
t

We present C

�

-algebrai
 quantum deformations of the \az + b" group for new values

of the deformation parameter.

1 Introdu
tion

Quantum \az + b" groups have been 
onsidered by several authors ([17℄, [10℄, [4℄). These

quantum groups are labeled by a 
omplex parameter q 
alled the deformation parameter.

In the known approa
hes it was either a real number between 0 and 1 or a root of unity

of the form e

2�i

N

with N an even integer greater or equal to 6.

In this paper we present the results of the authors thesis [8℄ in whi
h a deformation

of the \az+ b" group was 
onstru
ted with a 
omplex deformation parameter of modulus

stri
tly smaller than 1. The values of the parameter are restri
ted to a 
ertain subset of

the unit disk (
f. Subse
tion 2.1). It turns out that these values are the only ones for whi
h

the 
onstru
tion 
an be 
arried out within the s
heme adopted in [17℄ and [8℄. Moreover

many properties of the asso
iated spe
ial fun
tions (
f. Subse
tion 2.2) are equivalent to

the 
onditions imposed on the values of q.

We have de
ided to omit the proofs of most statements of the paper. Many of them

are the same for quantum \az + b" groups regardless of the value of the deformation

parameter. The analysis of Weyl 
ommutation relations is also similar for all values of

the parameter and is based on the results for the Zakrzewski 
ommutation relations from

[16℄. The spe
i�
 problems related to the deformation presented in this paper are mainly

of 
omputational nature and are all addressed in [8℄.

1.1 Des
ription of the paper

In the next two subse
tions we brie
y review the known quantum versions of the \az+ b"

group. We begin with the Hopf �-algebra level and then des
ribe the C

�

-algebrai
 versions

of S.L. Woronowi
z.

Se
tion 2 is devoted to the presentation of ne
essary instruments for the 
onstru
tion

of our quantum group. In Se
tion 3 we 
onstru
t the main obje
t in the 
onstru
tion of the

quantum group { the multipli
ative unitary operator, and examine its properties. Se
tion

4 presents the 
onstru
tion of the quantum group as well as some additional results. In

this se
tion the 
onne
tion with the algebrai
 situation of subse
tion 1.2 is made. In the

appendix we present �gures showing the set of allowable values of q and the group �

q

(
f. Subse
tion 2.1).
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1.2 Hopf �-algebra level

Let q be a non zero 
omplex number and let A be a unital �-algebra generated by three

normal elements a, a

�1

and b subje
t to relations:

a

�1

a = aa

�1

= I;

ab = q

2

ba; ab

�

= b

�

a:

We endow A with the stru
ture of a Hopf �-algebra putting

Æ(a) = a
 a; �(a) = 1; �(a) = a

�1

;

Æ(b) = a
 b + b
 I; �(b) = 0; ; �(b) = �a

�1

b:

This Hopf �-algebra has some interesting properties. For example its antipode � 
an

be written as

� = RÆ�

i=2

; (1)

where R is a �-antiautomorphism of A (
alled the unitary antipode) and �

i=2

is a holo-

morphi
 extension of a one parameter group (�

t

)

t2R

of �-automorphisms of A 
alled the

s
aling group (
f. [10, Prop. 2.4℄ and [8, Prop. 4.1℄ for details). We refer to the de
ompo-

sition (1) as the polar de
omposition of �.

1.3 Examples of S.L. Woronowi
z

In [17℄ S.L. Woronowi
z 
onstru
ted quantum deformations of the \az + b" group on the

level of C

�

-algebras. The algebrai
 relations of the Hopf �-algebra approa
h had to be

supplemented by spe
tral 
onditions. For q = e

2�i

N

(with N an even integer greater or

equal to 6) the 
onditions are that spe
tra of the generators a and b be 
ontained in the


losure of the set

N�1

[

k=1

q

k

R

+

� C :

It is remarkable that this 
ondition 
an be put in the algebrai
 framework. It is equivalent

to demand that a

N

2

and b

N

2

be selfadjoint. The quotient of the Hopf �-algebra A by the

ideal generated by a

N

2

�

�

a

N

2

�

�

and b

N

2

�

�

b

N

2

�

�

is again a Hopf �-algebra.

On the other hand for 0 < q < 1 the spe
tral 
ondition is that spe
tra of a and b be


ontained in the 
losure of

�

z 2 C : jzj 2 q

Z

	

� C :

This 
ondition 
annot be rephrased using only algebrai
 language.

The spe
tral 
onditions ensure the existen
e of C

�

-algebrai
 versions of the quantum

\az + b" group for spe
i�ed deformation parameters. They also ensure that the s
aling

group (�

t

)

t2R

and unitary antipode R are unique. This last feature is typi
al for the

C

�

-algebrai
 quantum groups (
f. [15℄).

The quantum \az + b" groups des
ribed in this paper are 
onstru
ted along the lines

indi
ated in [17℄. The 
orresponding spe
tral 
ondition is of non algebrai
 nature, but

many aspe
ts of the 
onstru
tion are similar to the 
ase of q being a root of unity.
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2 Spe
ial fun
tions and 
ommutation relations

2.1 Deformation parameter

The deformation parameter for our deformations of the \az+ b" group will be a non zero


omplex number q su
h that if we write

q = exp

�

�

�1

�

(2)

then Re� < 0 and

Im� =

N

2�

;

where N is a non zero even integer. The set of su
h q with jN j � 32 is plotted in Figure

1.

The parameter � satisfying (2) will be kept �xed throughout the paper. Having 
hosen

� we 
an 
ompute 
omplex powers of q:

q

z

= exp

�

z

�

�

for any z 2 C .

With q we asso
iate the subgroup �

q

� C n f0g de�ned as the group generated by q

and

�

q

it

: t 2 R

	

.

Proposition 2.1 The set �

q

is a 
olle
tion of jN j logarithmi
 spirals around 0 2 C :

�

q

=

jN j�1

[

k=0

q

k

�

q

it

: t 2 R

	

:

Consequently �

q

is isomorphi
 to Z

jNj

� R.

It follows that �

q

is a self dual lo
ally 
ompa
t abelian group. We shall denote by �

q

the 
losure of �

q

in C , i.e. �

q

= �

q

[ f0g. Figure 2 presents �

q

for q = exp

�

�

�1

�

with

� = �2 + i

8

2�

.

2.2 Spe
ial fun
tions

The self duality of �

q

ensures existen
e of a nondegenerate bi
hara
ter on �

q

, but we shall

need one with some additional properties:

Proposition 2.2 There exists a unique 
ontinuous fun
tion � : �

q

� �

q

! T whi
h is a

symmetri
 and nondegenerate bi
hara
ter, i.e.

�(
; 


0

) = �(


0

; 
);

�(
; 


0

)�(
; 


00

) = �(
; 


0




00

)

for all 
; 


0

; 


00

2 �

q

and

�

�(
; 


0

) = 1

for all 


0

2 �

q

�

=)

�


 = 1

�

;

satisfying

�(
; q) = Phase 
;

�(
; q

it

) = j
j

it

for all 
 2 �

q

and t 2 R. Moreover there exists a 
ontinuous fun
tion � : �

q

! T su
h

that for any 
; 


0

2 �

q

�(
; 


0

) =

�(



0

)

�(
)�(


0

)

:

3



The fun
tion � is obviously not unique. Although many aspe
ts of our 
onstru
tion

do not depend on the parti
ular 
hoi
e of �, we shall use

�(q

n

q

it

) = Phase

(n + it)

2

2�

:

Finally for 
 2 �

q

n

�

�q

�2k

: k 2 Z

+

	

let

F

q

(
) =

1

Y

k=0

1 + q

2k




1 + q

2k




:

Then F

q

extends to a 
ontinuous fun
tion �

q

! T. In parti
ular F

q

(0) = 1. Some of the most

important properties of F

q

are summarized in the following theorem (
f. [8, Thm. 5.11,

5.16℄, [17, Thm. 1.1, 1.2℄,[13, Prop. 1.1, Eq. (1.3)℄):

Theorem 2.3 1. For any 
 2 �

q

the fun
tion R 3 t 7! F

q

(q

it

q
) extends to a 
ontinuous

fun
tion on the strip fz 2 C : �1 � Im z � 0g whi
h is holomorphi
 in the interior

of this strip. The value of the extension at the point �i is (1 + 
)F

q

(
).

2. For any 
 2 �

q

we have

F

q

(
)F

q

(q

2




�1

) = C

q

�(q

�1


);

where C

q

is a 
onstant of absolute value 1.

The fun
tion F

q

will be of utmost importan
e for the study of 
ommutation relations

in the next subse
tion. Point 1. of Theorem 2.3 was in fa
t the property whi
h led to the

formula for F

q

. Point 2. allows a detailed analysis of the asymptoti
 behaviour of F

q

.

2.3 Commutation relations

The 
ommutation relations that need to be investigated in order to pro
eed with the


onstru
tion of the our quantum \az + b" groups are the following:

SR = q

2

RS;

SR

�

= R

�

S;

(3)

where (R;S) is a pair of normal operators a
ting on some Hilbert spa
e. Of 
ourse, (3)

is not a pre
ise way of expressing relations between operators on a Hilbert spa
e. It is

obvious, however, that bounded non zero normal operators 
annot satisfy (3).

It turns out that if one wants to 
onsider relatively \simple" realizations (i.e. ones

with phases and absolute values of R and S 
ommuting up to a s
alar, 
f. [8, Se
t. 6.1℄)

the 
orre
t de�nition is the following:

De�nition 2.4 Let H be a Hilbert spa
e and let (R;S) be a pair of 
losed densely de�ned

operators a
ting on H. We say that (R;S) is a q

2

-pair if

� R and S are normal,

� kerR = f0g = kerS,

� SpR; SpS � �

q

,

� for all 
; 


0

2 �

q

we have the Weyl relation:

�(S; 
)�(


0

; R) = �(


0

; 
)�(


0

; R)�(S; 
):

Theorem 2.5 Let H be a Hilbert spa
e and let (R;S) be a q

2

-pair of operators a
ting on

H. Then SÆR, RÆS, SÆR

�

and R

�

ÆS are 
losable operators and their respe
tive 
losures

satisfy (3).
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Idea of proof. Inserting in the Weyl relation (q; q

it

), (q

it

; q), (q; q) and (q

it

; q

it

0

) in

pla
e of (
; 


0

) and performing holomorphi
 
ontinuation in the �rst two 
ases we get

(PhaseS) jRj = jqjjRj (PhaseS) ;

jSj (PhaseR) = jqj (PhaseR) jSj;

(PhaseS) (PhaseR) = (Phase q) (PhaseR) (PhaseS) ;

jSj

it

jRj

it

0

= jq

it

j

it

0

jRj

it

0

jSj

it

:

This set of equalities makes it possible to prove that there exists a 
ommon 
ore for all

�nite produ
ts of operators from the set fS; S

�

; R;R

�

g. Then it is enough to 
he
k our

relations on ve
tors from this 
ommon 
ore.

It should be mentioned here that q

2

-pairs exist and their stru
ture is well known ([8,

Prop. 6.9℄). In fa
t any su
h pair is unitarily equivalent to a dire
t sum of so 
alled

S
hr�odinger pairs. The S
hr�odinger pair (R

S

; S

S

) a
ts on L

2

(�

q

) in the following way:

The operator R

S

is just multipli
ation by the variable

�

R

S

f

�

(
) = 
f(
);

while

�

S

S

f

�

(
) is the value of the analyti
 extension of R 3 t 7! f(q

it

q
) at the point

t = �i.

Theorem 2.5 is true for more general pairs, but here we restri
t our attention to pairs

of operators whi
h are distinguished (
f. [8, Se
t. 6.2, 6.5℄) by the following property:

Theorem 2.6 Let H be a Hilbert spa
e and let (R;S) be a q

2

-pair of operators a
ting on

H. Then

1. the sum S + R is a 
losable operator and its 
losure S

_

+R satis�es

S

_

+R = F

q

(RS

�1

)SF

q

(RS

�1

)

�

= F

q

(R

�1

S)

�

RF

q

(R

�1

S); (4)

in parti
ular S

_

+R is a normal operator and Sp

�

S

_

+R

�

� �

q

.

2. The fun
tion F

q

has the exponential property:

F

q

(S

_

+R) = F

q

(R)F

q

(S): (5)

Idea of proof. First one has to prove that

S

_

+RS = F

q

(R)

�

SF

q

(R): (6)

This follows from the property of the spe
ial fun
tion F

q

des
ribed in point 1. of Theorem

2.3. Assume that (R;S) is the S
hr�odinger pair. Then, sin
e R is the operator of multi-

pli
ation by the variable, we formally have SF

q

(R) = (1 + R)F

q

(R) (
f. Theorem 2.3 and

des
ription of the S
hr�odinger pair).

In the se
ond step one shows that if (R;S) is a q

2

-pair then so is (RS

�1

; S). Then

applying (6) to this pair we get the se
ond part of (4). The �rst part requires a few more

tri
ks whi
h in
lude the use of point 2. of Theorem 2.3.

To appre
iate the power of this theorem more fully we need a result about the spe
ial

fun
tion F

q

and the aÆliation relation.

Theorem 2.7 Let H be a Hilbert spa
e and let T be a normal operator a
ting on H su
h

that SpT � �

q

. Let A � B(H) be a nondegenerate C

�

-subalgebra. Then the following


onditions are equivalent:
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1. for all 
 2 �

q

the unitary operator F

q

(
T ) belongs to M(A) and the mapping

�

q

3 
 7�! F

q

(
T ) 2M(A)

is stri
tly 
ontinuous,

2. the operator T is aÆliated with A.

The key ingredient of the proof of this theorem the fa
t that the element F 2

M

�

C

1

�

�

q

�


 C

1

�

�

q

��

given by

F (
; 


0

) = F

q

(



0

)

(
; 


0

2 �

q

) 
onstitutes a quantum family of elements aÆliated with C

1

�

�

q

�

whi
h gen-

erates this algebra in the sense of [14, Se
t. 4℄.

The algebrai
 
onsequen
es of 
ommutation relations des
ribed in De�nition 2.4 
an

now be revealed in the following theorem:

Theorem 2.8 Let H be a Hilbert spa
e, A � B(H) a non degenerate C

�

-subalgebra and

let (R;S) be a q

2

-pair su
h that R;S � A. Then

1. the operator S

_

+R is aÆliated with A,

2. the operator RS is aÆliated with A.

Proof. Ad 1. By equation (5) we have for all 
 2 �

q

F

q

�


(S

_

+R)

�

= F

q

(
R)F

q

(
S)

and sin
e 
omposition of operators is a 
ontinuous operation (on bounded sets) on M(A)

Theorem 2.7 ensures that (S

_

+R) � A.

Ad 2. Applying F

q

to both sides of (6) we get

F

q

(S

_

+RS) = F

q

(R)

�

F

q

(S)F

q

(R):

On the other hand by (5) we have

F

q

(S

_

+RS) = F

q

(RS)F

q

(S):

Combining these formulae we obtain

F

q

(RS) = F

q

(R)

�

F

q

(S)F

q

(R)F

q

(S)

�

: (7)

Now reasoning presented in the proof of 1. gives RS � A. Q.E.D.

Formula (7) appeared �rst in [7, Cor. 2.9℄

3 The multipli
ative unitary

Equipped with the tools of Se
tion 2 we 
an pro
eed with the 
onstru
tion of the quantum

group. We shall use the theory of manageable and, more generally, modular multipli
ative

unitaries ([15℄, [9℄, [1℄). Before we de�ne the operator from whi
h our quantum group is

built we will des
ribe the \quantum spa
e" of the group. This \quantum spa
e" is the

operator domain (
f. [17, Se
t. 2℄, [2℄, [11℄) denoted by G and de�ned as follows: for a

Hilbert spa
e H we shall write G

H

for the set of pairs of normal operators (a; b) a
ting

on H su
h that kera = f0g, a preserves ker b and (bj

ker b

? ; aj

ker b

?) is a q

2

-pair a
ting on

ker b

?

. The 
orresponden
e H 7! G

H

is an operator domain whi
h plays the role of the

underlying spa
e of our quantum group.

Now let us 
hoose a Hilbert spa
e H and a pair (a; b) 2 G

H

su
h that ker b = f0g.

Then let

W = F

q

(b

�1

a
 b)�(b

�1


 I; I 
 a): (8)

This will be our multipli
ative unitary.
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Proposition 3.1 Let H be a Hilbert spa
e and let (a; b) 2 G

H

su
h that ker b = f0g.

De�ne W by (8). Then

W (a
 I)W

�

= a
 a;

W (b
 I)W

�

= a
 b

_

+ I 
 a:

(9)

Proof. It is not diÆ
ult to show (
f. [8, Lem. 7.3℄) that

�(b

�1


 I; I 
 a)(a
 I)�(b

�1


 I; I 
 a)

�

= a
 a:

Then using the fa
t that (b; a) is a q

2

-pair one 
an show that a 
 a strongly 
ommutes

with b

�1

a
 b. It means that

W (a
 I)W

�

= F

q

(b

�1

a
 b)�(b

�1

a
 I; I 
 a)(a
 I)

��(b

�1


 I; I 
 a)

�

F

q

(b

�1

a
 b)

�

= F

q

(b

�1


 b)(a
 a)F

q

(b

�1

a
 b)

�

= a
 a:

For the proof of the se
ond part of formula of (9) noti
e that the pair (R;S) = (b
I; a
b)

is a q

2

-pair of operators a
ting on H 
H . Sin
e b
 I 
ommutes with �(b

�1


 I; I 
 a),

using the se
ond formula (4) we obtain

W (b
 I)W

�

= F

q

(b

�1

a
 b)�(b

�1


 I; I 
 a)(b
 I)

��(b

�1


 I; I 
 a)

�

F

q

(b

�1

a
 b)

�

= F

q

(b

�1

a
 b)(b
 I)F

q

(b

�1

a
 b)

�

= F

q

(R

�1

S)RF

q

(R

�1

S)

�

= S

_

+R

= a
 b

_

+ b
 I:

Q.E.D.

The operator W is a multipli
ative unitary, i.e.

W

23

W

12

= W

12

W

13

W

23

and the proof of this pentagon equation relies on the exponential formula (5).

In fa
t we have the following:

Proposition 3.2 Let (a; b) 2 G

H

be su
h that ker b = f0g and let (ba;

b

b) 2 G

K

, where K

is some other Hilbert spa
e. De�ne W by (8) and let

V = F

q

(

b

b
 b)�(ba
 I; I 
 a):

Then V is an operator adapted to W , i.e.

W

23

V

12

= V

12

V

13

W

23

on K 
H 
H.

The next result, whi
h enables us to pro
eed with the 
onstru
tion of the quantum

\az + b" group for new values of the deformation parameter, states that W is a modular

multipli
ative unitary ([9℄):

Theorem 3.3 Let H be a Hilbert spa
e and let (a; b) 2 G

H

be su
h that ker b = f0g.

De�ne W by (8). Then there exist positive selfadjoint operators Q and

b

Q on H su
h that

kerQ = f0g = ker

b

Q and a unitary operator

f

W on H 
H su
h that

W

�

b

Q
Q

�

W

�

=

�

b

Q
Q

�

7



and for any x; z 2 H, u 2 D(Q), y 2 D

�

Q

�1

�

(x
 u W z 
 y) =

�

z 
Qu

f

W x
Q

�1

y

�

:

The operators Q,

b

Q and

f

W are given by

Q = jaj;

b

Q = jbj;

f

W = F

q

�

�(b

�1

a)

>


 b

�

�

�

�

(b

�1

)

>


 I; I 
 a

�

:

Again the key to this result lies in the spe
ial fun
tions introdu
ed in Subse
tion 2.2.

More pre
isely in the fa
t that the distributional Fourier transform of F

q

on the lo
ally


ompa
t abelian (and self dual) group �

q

is

b

F

q

(
) = �

F

q

(�q

2

)

2��

�(�q

�2

; 
)


(1� 
)F

q

(�q

2


)

:

4 The quantum group

4.1 The 
onstru
tion

The theory of manageable and modular multipli
ative unitaries lets us now 
arry out the


onstru
tion of our quantum group. Throughout this se
tion we shall �x a Hilbert spa
e

H and a pair (a; b) 2 G

H

su
h that ker b = f0g.

The algebra playing the role of the algebra of 
ontinuous fun
tions vanishing at in�nity

on our quantum group is by de�nition

A =

�

(! 
 id)W : ! 2 B(H)

�

	

norm 
losure

: (10)

It 
an be shown ([8, Prop. 7.25℄, 
f. [17, Se
t. 6℄) that A is in fa
t isomorphi
 to a 
rossed

produ
t

A = C

1

�

�

q

�

o

�

�

q

where the a
tion � of �

q

on C

1

�

�

q

�


omes from the obvious a
tion of �

q

on �

q

by multi-

pli
ation.

Let us des
ribe in more detail the relationship of operators a and b with the C

�

-

algebra A. The in
lusion C

1

�

�

q

�

,! M

�

C

1

�

�

q

�

o

�

�

q

�

is a morphism from C

1

�

�

q

�

to

C

1

�

�

q

�

o

�

�

q

= A. The operator b 
an be identi�ed with the image under this morphism

of the element z aÆliated with C

1

�

�

q

�

given by

z(
) = 


for all 
 2 �

q

. It is therefore 
lear that b � A.

The operator a is the unique normal operator aÆliated with A su
h that the unitary

elements

�(a; 
) 2M(A)

(
 2 �

q

) 
onstitute the unitary representation of �

q

implementing the a
tion � on the

image of C

1

�

�

q

�

in M(A). The existen
e of su
h an operator is a 
onsequen
e of the

famous SNAG theorem supplemented by a result similar to Theorem 2.7 ([8, Thm. 7.15℄).

Moreover it 
an be shown that a

�1

is aÆliated with A and the three elements

a; a

�1

; b

generate the C

�

-algebra A in the sense of [14, Se
t. 3℄.
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The theory of manageable multipli
ative unitaries ensures the existen
e of a 
oasso-


iative morphism Æ 2 Mor(A;A
A) given by

Æ(
) = W (

 I)W

�

for any 
 2 A. It is now an easy 
onsequen
e of Proposition 3.1 that the a
tion of Æ on

aÆliated elements a and b is

Æ(a) = a
 a;

Æ(b) = a
 b

_

+ b
 I:

A

ording to the general theory the s
aling group (�

t

)

t2R

of our quantum group is

given by �

t

(
) = Q

2it


Q

�2it

for all 
 2 A. Sin
e Q = jaj we see that �

t

is the unique

automorphism of A su
h that

�

t

(a) = a;

�

t

(b) = q

2it

b:

(11)

It also follows from general theorems about manageable and modular multipli
ative uni-

taries that the unitary antipode R of our quantum \az + b" group is given on generators

by

a

R

= a

�1

;

b

R

= �qa

�1

b:

(12)

Combining (11) and (12) we 
an 
ompute the antipode � = RÆ�

i=2

:

�(a) = a

�1

;

�(b) = �a

�1

b:

All these formulae agree with those found in the Hopf �-algebra framework (
f. Subse
tion

1.2). We shall denote our quantum group by G = (A; Æ).

4.2 The dual group

The algebra interpreted as the algebra of 
ontinuous fun
tions vanishing at in�nity on the

redu
ed dual of G is by de�nition

b

A =

�

(id
 !)(W

�

) : ! 2 B(H)

�

	

norm 
losure

:

The 
omultipli
ation

b

Æ on

b

A is given by

b

Æ(d) = �

�

W

�

(I 
 d)W

�

;

(where � is the 
ip automorphism of B(H 
H)) for all d 2

b

A.

It will be 
onvenient at this point to introdu
e the notation ba = b

�1

,

b

b = b

�1

a. The

following theorem gives a 
omplete des
ription of the redu
ed dual

b

G = (

b

A;

b

Æ) of G.

Theorem 4.1 The operators ba and

b

b are aÆliated with

b

A and there exists an isomorphism

	 2 Mor

�

A;

b

A

�

su
h that 	(a) = ba, 	(b) =

b

b and

b

Æ

�

	(
)

�

= �(	
	)Æ(
):

for all 
 2 A.
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The proof of this theorem is the same for quantum \az + b" groups for all values of

the deformation parameter ([17, Se
t. 7℄, [8, Se
t. 7.5℄).

The results of [5℄ 
an be easily transfered to the 
ase where the deformation parameter

assumes values des
ribed in Subse
tion 2.1. They say that for any Hilbert spa
e K and

any unitary element V 2M(K(K)
A) su
h that

(id
 Æ)V = V

12

V

13

there exists a unique pair (ea;

e

b) 2 G

K

su
h that

V = F

q

(

e

b
 b)�(ea
 I; I 
 a):

This statement is 
onverse to Proposition 3.2 and gives full des
ription of strongly 
ontin-

uous unitary representations of G. In view of Theorem 4.1 this means that the quantum

\az + b" group 
onstru
ted in Subse
tion 4.1 is amenable.

4.3 The Haar measure and related topi
s

It was re
ently shown in [18℄ that the framework of modular multipli
ative unitaries is

very 
onvenient for investigation of Haar weights. More pre
isely if W is a modular

multipli
ative unitary and Q;

b

Q and

f

W are operators related to W as in Theorem 3.3 and

A is the C

�

-algebra de�ned by (10) then

h(
) = Tr

�

b

Q


b

Q

�

de�nes a right invariant weight on A. If this weight is densely de�ned it is the right Haar

measure of our quantum group.

It turns out that in the 
ase of W de�ned by (8) the weight h is densely de�ned. As

shown in [18, Example 3, Se
t. 3℄ for an element


 = f(a)g(b) 2 A

(where f 2 C

1

(�

q

), g 2 C

1

�

�

q

�

) we have

h(


�


) =

Z

�

q

jf(
)j

2

d�(
)

Z

�

q

jg(
)j

2

j
j

2

d�(
);

where d� is a Haar measure on �

q

. The s
aling 
onstant of this \az + b" group (i.e. the


onstant � su
h that hÆ�

t

= �

�t

h) 
an now be easily 
omputed: � = exp

�

4 Im�

�1

�

.

It should be remarked that the methods developed in [10℄ also work perfe
tly well for

our deformation of the \az + b" group.

The quantum \az + b" group has a subgroup whi
h is a 
lassi
al group isomorphi


to �

q

. Using the theory of 
rossed produ
ts by abelian lo
ally 
ompa
t groups ([3℄) one


an obtain a satisfa
tory de�nition of the homogeneous spa
e G=�

q

. It turns out to be a


lassi
al spa
e and it 
arries a natural a
tion of G. These results will be 
olle
ted in a

separate paper [6℄.

Appendix

In the appendix we 
olle
ted �gures showing the allowed values of the deformation pa-

rameter q inside the unit 
ir
le in the 
omplex plane and an example of the group �

q

for

q = exp

�

�

�1

�

with � = �2 + i

8

2�

.
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0:5 1:0�0:5�1:0

Figure 1: Values of the deformation parameter q (N = �2; : : : ;�32)

1 2 3 4 5�1�2�3�4�5

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

q

Figure 2: The group �

q

for � = �2 + i

8

2�
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